If it's not what You are looking for type in the equation solver your own equation and let us solve it.
2x^2-98x+5=0
a = 2; b = -98; c = +5;
Δ = b2-4ac
Δ = -982-4·2·5
Δ = 9564
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{9564}=\sqrt{4*2391}=\sqrt{4}*\sqrt{2391}=2\sqrt{2391}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-98)-2\sqrt{2391}}{2*2}=\frac{98-2\sqrt{2391}}{4} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-98)+2\sqrt{2391}}{2*2}=\frac{98+2\sqrt{2391}}{4} $
| -102=-3w-(9w+6) | | -9y-(-3+7y)=-29 | | 1/12y+5=-11 | | -4(-6x+8)=11 | | x^2-90x +675=0 | | (x)(x+5)=50 | | m/3=222/18 | | 2x10+3=23 | | C-3x+4=3-9 | | 6n×8=4n-9 | | x-1.0x=4 | | (-3)×n=-15 | | n=5+16 | | 12+4x=R | | 2+3f=18.29 | | 10r+1-4r=-9+5r | | (x+9)^0+137=180 | | 10r+1-4r=-9 | | Z1=-6+4i | | 2x-10-2(2+x)=-14 | | 10+9y=7y-10 | | 85*89=n | | Z1=-5X+2+6i | | 8+2n+3n=-4+9n | | 30x-15=-45 | | 1.75-(x+5/3)=-12/5 | | 126°=3x | | -10d-7=-1-9d-10 | | 10+10-3q=2q-10 | | h+7π=34π | | 5(6r-5)=185 | | 5(x–1)+3=5x–2 |